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The granular jump
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When a fluid jet hits a solid surface, a hydraulic jumps occurs. This jump sharply
delimits a thin film of liquid from a thicker film. We show here that a granular jet
impinging on a solid surface also gives rise to several features reminiscent of the
hydraulic jump and we refer to this situation as the granular jump. We describe, in
detail, this phenomenon and show that if many of its features can be understood in
analogy with the hydraulic jump, others are directly related to the granular nature of
the medium and, in particular, the small-scale dynamics of the jump.

1. Introduction
Granular materials exhibit behaviour that crosses the frontiers between different

states of matter. They can behave as liquid, solid or gas (Nagel 1992; Jaeger 1996;
de Gennes 1999; Kadanoff 1999). In certain situations, driven granular materials
show features reminiscent of instabilities seen for fluids such as the Faraday insta-
bility, the occurrence of Taylor vortices, or the Kelvin–Helmholtz instability (Melo,
Umbanhowar & Swinney 1995; Garcimartin et al. 2002; Goldfarb, Glasser & Shinbrot
2002; Conway, Shinbrot & Glasser 2004). In other situations, differences with fluids
arise immediately such as the flow of sand around an obstacle, or the formation of
arches and the ability to jam and form clusters (Liu & Nagel 1998; Amarouchene,
Boudet & Kellay 2001; Rericha et al. 2002; Zuriguel et al. 2005). The study of the
analogies and differences between liquid behaviour and granular flows is therefore
important for the understanding of the subtle properties of granular flows.

In this respect, work on the description of rapid granular surface flows using
depth-averaged equations and its relations to the so-called shallow-water equations
has been instructive. Savage & Hutter (1989) considered this problem in relation to
the spreading of avalanches. The small thickness of the flow considered allows an
integration over the thickness to obtain one-dimensional equations for the average
thickness of the avalanche and its velocity. Subsequent studies by several authors
have applied the Savage & Hutter model to the understanding of avalanches and
ways to divert them. Gray, Tai & Noelle (2003) showed that the hydraulic model is
sufficient to capture several qualitative features and that bores and oblique shocks,
obtained experimentally, can be understood within this formalism. Hákonardóttir &
Hogg (2005) showed, through systematic measurements on oblique shocks, that the
shallow-water equations, with slight modifications, are adequate for describing their
experimental observations. Such depth-averaged models can be extended to take more
complicated friction laws into account (Pouliquen & Forterre 2002).

In this work, we consider a situation equivalent to the circular hydraulic jump which
arises when a vertical jet of liquid impinges continuously on a rigid planar surface
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normal to the jet axis (Watson 1964; Bush & Aristoff 2003). This impact gives rise to
a radial horizontal flow which consists of two regions: near the jet axis, the flow is
rapid and the liquid film is thin, but at some distance from the impact point there is
a narrow annular region, known as the jump, over which the film thickness suddenly
increases. Beyond this jump, the thick liquid layer moves at a slower speed than the
thin film. Various phases (the falling jet, the thin and thick layers separated by the
jump) are involved in the hydraulic jump. Our aim here is to describe the behaviour
of a granular flow in analogous circumstances. We show that several features of the
obtained patterns are similar to those obtained with simple liquids whereas other
characteristics are related purely to the granular nature of the material. The example
studied here extends previous work on the similarities between rapid granular flows
and shallow-water flows.

2. Observation of the granular jump
We perform a set of experiments where a granular material is poured from a funnel

fixed at some distance above a flat horizontal surface. We observe that when the falling
column or jet of granular material impacts the surface, it fragments and gives rise to
a thin and fast radial flow of grains just like the thin and fast layer for liquids. This
flow then decelerates because of friction against the flat plate, and stops as a circular
ring. Upon further injection of sand, this initial circular ring evolves and gives rise to
a pattern whose front moves towards the injection point. Figure 1 shows an overview
of this phenomenon. The circular jet in the middle impacts the flat glass plate giving
rise to a thin and fast radial flow which, because of friction, stops and gives rise to a
ring that closes as more sand is injected. The deposited sand which forms the outer
ring in figure 1(a), shows circular ripples as we have previously reported (Boudet
et al. 2005). Figure 1(b) shows a close-up of the impact region. The jet in the centre
impacts the plate, keeping a well-defined curved shape. This impact gives rise to a
horizontal layer which, as it encounters the accumulated sand, forms a jump. The
position of the jump moves towards the impact region as the circular ring closes.

Figures 1(c), 1(d), and 1(e) show, respectively, the outer ring visualized as a radial
cut using a laser sheet falling perpendicularly to the sand pile, with many well-defined
ripples which are engendered by the oscillations of the jump itself (figure 1d , e).
Indeed, the jump moving towards the injection point is an example of a sand front
(Mahadevan & Pomeau 1999; Bonnier, Boudet & Kellay 2003; Boudet et al. 2003)
which has an angle with the horizontal that changes as the front moves. This angle
oscillates between a maximal angle (figure 1e) and a minimal angle (figure 1d) close to
the repose angle. These oscillations are due to a stick–slip type of motion of the sand
front and engender the oscillations of the deposited sand profile. The wavelength of
these ripples has been the subject of a previous study (Boudet et al. 2005) where it
was found to be of the order of a few millimetres and to increase linearly versus the
funnel diameter or equivalently the jet diameter.

Figure 2 shows a schematic of the granular jump studied here. The granular jet in
the middle has a diameter D(z), where z is the vertical distance from the funnel outlet:
D(z) is a decreasing function of z since the jet thins as it falls. The sand layer after
impact has a height denoted by h(R), (R being the radial distance from the impact
position), which is curved near the jet impact position, becomes small and constant,
as we will see below, after impact, and then increases at the level of the jump and in
the annular region beyond the jump. This annular region starts with a height denoted
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Figure 1. (a) A view from above showing the column of sand at the centre and the surrounding
jump showing signs of ripples on the outer annulus. The diameter of the outer annulus is
18 cm. (b) An expanded view of the jet impact and the granular jump in the background.
(c) A laser sheet falling perpendicularly to the sand pile helps to visualize the surface profile of
the sand pile and the ripples. (d) and (e) An expanded view of (c) during the dynamic process.
The ripples are formed by an oscillation of the front. In (e) the sand front has a high slope
whereas in (d) the front has relaxed to a lower slope. The scale bars have a length of 0.3 cm.

hJ at R = RJ and has an increasing height h∞(R) as R decreases towards the jump
position.

From its ejection up to its deposition, the granular material thus experiences several
phases. We distinguish five phases which are studied in terms of three basic control
parameters: the diameter d of the glass beads which compose the granular material,
the diameter D of the funnel outlet, and the chute height H. We point out, in
particular, the interplay between the granular-like and the fluid-like behaviour of
these successive phases.

Before its arrest, we distinguish three phases in the flow: the vertically falling jet;
the impact region; and the thin horizontal layer. After a transient regime, a stationary
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Figure 2. A schematic of the granular jump. z is the vertical axis (the origin is the funnel
outlet and H the distance between the funnel and the horizontal surface), R the radial distance
from the impact centre. The jet is characterized by its local radius D(z), velocity V (z) and
density ρ(z). After the impact, we refer to the height of the sand layer as h(R) near the impact,
h0 for the horizontal layer and h∞(R) in the sand pile, this region starts with a height hJ at
R = RJ . V0 is the speed in the horizontal layer near the jet impact, and Vc(R) is the closing
speed of the sand pile.

regime takes place. This transient regime is the result of the first impact of the jet
on the solid surface. As a consequence of this transient, we distinguish two sequences
in the deposition process: the granular initial jump formation and the filling phase.
Roughly speaking, the granular jump is formed by the arrest of the horizontal layer
during its transient, i.e. as the jet first impacts the solid surface. This arrest is due to
friction effects described well by the usual Coulomb law, and during this period the
deposited species reach a maximal height hJ at radial position RJ which characterize
the initial jump. Then the horizontal layer reaches its stationary regime and collides
with the jump previously formed whose characteristics remain, however, unchanged.
This corresponds to the beginning of the filling phase where the deposited species
form a sand pile moving towards the injection centre. In this phase, the incoming
flow decelerates by friction, but its arrest, due to the collision with the previously
accumulated grains, is more sudden as R decreases.

The filling phase appears as a succession of short periods comparable to the first
one (the formation of the initial jump) with the end of each period corresponding
to an instability of the advancing front. This instability appears when the slope of
the advancing front exceeds some maximal slope, and a remnant of this oscillating
dynamics is the presence on the whole surface of the sand pile of a regular pattern of
concentric ripples with a constant wavelength λ. During the deposition, the width of
the advancing front is of the order of λ, which is only a few millimetres. We can thus
model the sand front dynamics at two scales: a global one where the fluctuations of
order λ are neglected, and a local one with a range δR = λ where the fluctuations are
taken into account.

3. Experimental details
The experiments use different size funnels and different sized grains (glass beads).

The impacted surface is made of smooth glass and the range of variation of the control
parameters is 0.4 cm � D � 2.4 cm for the funnel outlet diameter, 3 cm � H � 150 cm
for the chute height and 70 µm<d < 500 µm for the diameter of the glass beads which
compose the granular material. An important feature of the granular jump studied
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here is its height profile whether in the static sand pile, near the impact zone, or
in the horizontal dilute fast-flowing layer. This profile was visualized using a thin
laser sheet which falls perpendicularly to the pattern. This laser sheet is scattered by
the surface of the heap, so the surface appears bright when viewed from the side.
Figure 1(c) is an illustration of this technique for visualizing the ripple pattern, for
example. A CCD camera operating both at standard rates (25 images per second)
and at faster rates (between 250 and 1000 images per second) was used to record
the images. For the horizontal layer, and since it is dilute, the laser sheet light
is multiply scattered by the layer. This scattered light when viewed from the side,
appears as a bright band. The thickness of this layer was then extracted from the
profile of the band of scattered light. This profile is Gaussian-like, and its half width
gives the thickness of the layer. Direct visualizations of the flowing grains were also
carried out using either transmitted broad white light or illumination from above,
so the granular density could be evaluated and the results could be checked. A
combination of these two techniques allowed us to extract the thickness of the thin
dilute horizontal layer. The velocity measurements were carried out mostly by laser-
Doppler velocimetry (LDV). This technique turns out to be well adapted to granular
flows as has been demonstrated by Zuriguel et al. (2005) and Amarouchene & Kellay
(2006). The principle of this technique, which is widely used in experiments in fluid
dynamics, is simple. It uses a laser beam which is split in two by a beam splitter.
These two beams are then brought together with a lens to form a thin spot where the
two beams interfere. As particles cross this intersection zone, they scatter the light
when they cross a bright fringe. The scattered signal is therefore modulated as the
particle crosses several bright fringes. An analysis of this signal allows us to extract
the modulation frequency which is directly proportional to the transit velocity of the
particle as it crosses the scattering volume (which is 0.1 mm in diameter). We have
used a commercial laser-Doppler velocimetry (two-dimensional flowlite from Dantec
dynamics) capable of measuring the velocity in two perpendicular directions as it uses
two colours and four beams. The LDV velocity measurements were complemented
by measurements using particle imaging velocimetry (PIV) which is now standard in
measuring the velocity in granular flows.

4. The fluid phases in the stationary regime
We begin here with a description of the sand flow in its stationary regime

which presents some analogy with a compressible fluid. In particular, most of its
characteristics are practically independent of the diameter d of the beads in the range
we consider (to be precise the given results correspond to d = 116 µm). The only
noticeable exception is the depth of the thin horizontal layer outside the impact region
which appears to be a packing of a few bead layers and is thus proportional to d.

We first measured the flux of the sand coming out of the funnel used to pour the
sand as a column. The measured injected mass flux Q varies with the funnel diameter
D according to the usual law Q ∝ D5/2 and it is given

Q = 0.29πρc

√
gD5/2, (4.1)

where ρc is the compact density of the granular material (ρc = 1.44 g cm−3) and g

the standard gravity constant. The speed of the flow when it leaves the funnel outlet
is thus V (0) = 4Q/πρcD

2 = 1.16
√

gD. This velocity corresponds to a fall inside the
funnel of a vertical distance of order D under an effective acceleration ge−χ =0.68g,
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Figure 3. The vertical speed V (z) as function of z the distance from the funnel outlet. The
lines are fits using (4.2). g′ = 877 cm s−2; d = 116 µm.

where the decompaction factor χ, introduced into the dynamic Janssen effect (Duran
1997), has in our case the value χ ≈ 0.4.

All the phases appearing in the course of the experiment have rotational symmetry
around the vertical axis Oz of the falling jet (z = 0 and z =H correspond to the
funnel outlet and to the impact point, respectively), and in the following we describe
a radial section of the flow.

4.1. The vertical jet

We began by characterizing the falling jet through measurements of the speed of fall
versus the height z, the diameter of the jet and consequently, the density of the falling
jet.

The measurements of the vertical speed V (z) of the jet at various distances z from
the funnel outlet, using laser Doppler velocimetry, are shown in figure 3 and indicate
that the chute appears as a free fall under an effective gravity g′, as usually observed
in granular chute flow (Duran 1997), independent of D, i.e.

V (z) =
√

2g′z + V 2(0) (g′ ≈ 877 cm s−2). (4.2)

The diameter D(z) of the jet decreases during the fall, as the jet thins, and the
various data for different funnel diameters are shown in figure 4. These data can be
reduced to the form

D(z)

D
∼

(
z

D

)−1/6

, (4.3)

where the exponent −1/6 is the best fit, as shown in figure 4. This exponent is not
far from the value −1/4 given in the case of liquids and is due to mass conservation
(Middleman 1995). Figure 4 shows that the shape of the jet is universal once D(z)
and z itself are rescaled by the funnel diameter. This scaling is valid for distances z

greater than D. The density ρ(z) of the jet is then given by the mass conservation
relation Q = πρ(z)D(z)2V (z)/4 and is found to decrease during the fall according to:

ρ(z) ∼
(

z

D

)−1/6

. (4.4)
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Figure 4. The diameter of the jet D(z) normalized by D as a function of z/D for several
funnel diameters (d = 116 µm). The inset shows a photograph of the jet.

This expression is valid when the chute height is greater than about two funnel
diameters. On the other hand, for important chute heights, the jet becomes unstable
and breaks into droplet-like structures. This instability, which completely destroys
the jet, appears for zc ≈ 20, 40, 100, 140 cm for D = 0.4, 0.6, 1, 1.2 cm, respectively
(the jet density is then 0.4ρc approximately). Between these two limiting values, the
expressions (4.2), (4.3) and (4.4) describe the stationary regime of a stable granular
jet, where the collective motion of the grains allows them to penetrate the air more
easily than isolated ones. These collective effects are probably also present in the case
of gravity-driven dense suspension jets (Nicolas 2002), where, before the appearance
of instabilities, the suspension falls like a solid body.

The experiments analysed in this work are performed with stable jets. When the
jet reaches its limit of stability, the dynamics of the flow is very different from the
behaviour depicted in the following sections. In particular, the granular deposition is
no longer made on a small range and involves particles going way beyond the jump.
As a result, the observed shape of the sand pile and its dynamics are different from
the one described here, and the regular ripples disappear in experiments at large fall
heights.

4.2. The impact region

In the stationary regime, the transition from vertical to horizontal motion occurs
in a region which can be accurately delimited by inspection of the surface profile.
The appearance of the surface in this region is smooth, comparable with the surface
profile of the falling jet, suggesting that the grains follow curved trajectories (see
figure 1b) driven by some underlying accumulation of quasi-static grains. Indeed, a
camera placed below the impacted surface in the jet axis shows slow motion of the
grains in a radius of the order of D(H ).

The surface profile in the impact region was obtained using video imaging of a laser
sheet falling perpendicularly to the jet since the surface of the jet and of the impact
region scatter light strongly. This profile denoted h(R) is small far from the impact
point and increases rapidly as the jet is approached. We characterize the impact region
in the following way. When the radial distance R corresponds to the radius of the
vertical jet (R ≈ D(H )/2), the surface profile begins to bend from the vertical position
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Figure 5. The height profile h(r) in the impact region as a function of the radial distance R
for several funnel diameters and chute heights. The scales are normalized by the jet radius
before the impact D(H )/2.

defined by the falling jet ( it starts to bend at a height δH of a few millimetres) into a
smooth curved profile which becomes nearly horizontal for R greater than a distance
R0 with a height h0 (h0 is less than 1mm as we will see below). At radial distances
greater than R0, the flow remains horizontal with a velocity profile practically flat
as described below. The impact region thus extends for 0 � R � R0 and is limited for
R � D(H )/2 by a smooth profile whose minimal radius of curvature appears to be
given approximately by D(H )/2. This is shown in figure 5 where it is also shown how
various profiles of the impact zone can be rescaled onto a single one. Both h(R) and
R are rescaled by the diameter of the jet at the fall height H . The shape of the jet
versus the chute height as well as the shape of the impact region of the jet with the
surface turn out to be universal after a simple rescaling by the diameter of the jet.

The properties of the jet, ρ(H ), V (H ) and D(H ), as it enters the impact region
are known as shown above (δH can be neglected). The flow then exits this region
at R0 with velocity V0 and occurs in a horizontal thin layer with height h0. The
three quantities can be measured separately. As the mass conservation in the radial
section reads R0h0V0ρ(R0) = Q/2π, the density ρ(R0) can be deduced from these
measurements, with the result that it is close to the compact density ρc. From
measurements of V0 versus H we have evidenced the following conservation law for
the transition from vertical to horizontal flow:

ρ(H )V (H ) = ρcV0, (4.5)

which implies, through mass conservation, the relation R0 = D2(H )/8h0 which gives the
extent of the impact region and therefore the location of the transition from vertical
flow to horizontal flow. The validity of these expressions has been systematically
checked and we give, for example, in figure 6 the measured values of V0 compared
to their values given by V0 = ρ(H )V (H )/ρc = 4Q/πρCD2(H ) according to (4.5); the
agreement is very good. In terms of the control parameters, this relation is

V0 ≈ 1.4
√

gH 1/3D1/6. (4.6)
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Figure 6. The speed V0 measured with the LDV at R = R0 as a function of the chute height
(squares). The circles show the values of the speed deduced from the measured jet diameter.
The line is the result of (4.6).

The relative energy lost in the impact region is thus important, since the square root
of the restitution coefficient e1/2 =V0/V (H ) = 1.05(D/H )1/6 varies between 0.5 and
0.8. These values are not far from those obtained by Staron & Hinch (2005), albeit
in a different configuration.

In spite of the typical effects due to the compressibility of the granular flow
at impact, its smooth transition from vertical to horizontal motion offers some
similarities with a hydrodynamic flow. In particular, the conservation relation (4.5),
implies that the density and the speed after impact are determined solely by the
properties of the falling jet.

4.3. The horizontal layer

The horizontal layer corresponds, in a radial cut, to the moving species in the region
R � R0, with an initial height h0 and speed V0, the density being near the compact
density at R0. In the stationary regime, this flow begins as a supersonic shallow layer
(Amarouchene & Kellay 2006), slows down by friction with the horizontal surface
as it propagates, then collides with the sand front or jump which moves in the
opposite direction. This process results, by deposition, in an increase in the size of
the sand pile. Before this collision, the characterization of the layer is simple. Its
depth h0 is small and constant during the propagation. This height was determined
from the multiple scattering of the laser light sheet. A snapshot of this scattering
pattern is shown in figure 7 where it appears as a bright band. A cut at a particular
location R shows a Gaussian-like profile. A slight asymmetry can be seen in the
experimental profile, however. We have identified the half-width of this profile as the
thickness of this layer. Confirmation of this procedure for the measurement of this
thickness comes from direct visualizations of this flow and from the matching with the
previously determined profile near the impact region, which is simpler to extract from
the surface scattering of the laser light as explained above. This value, independent
of the chute height and of the funnel diameter, is linear versus the diameter of the
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Figure 7. The photograph shows the light scattering of the laser sheet by the horizontal layer.
Notice that the intensity of the scattered light decreases from left to right. The flow here is
from left to right. The intensity decreases since the density of the horizontal layer decreases
with the distance from the impact point. The figure shows a vertical cut at one location R of
the light intensity scattered by the horizontal layer (circles) and the curve is fit to a Gaussian
profile, the half-width of which determines the thickness h0 at that location.
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Figure 8. The horizontal layer thickness as a function of the bead diameter d . The straight
line is equal to 4d .

beads (figure 8). We find that h0 ∼ 4d . This height h0 changes when the nature of the
surface changes and was found to be greater for rougher surfaces.

As R increases, the speed of the particles in the horizontal layer V0(R) decreases
according to the Coulomb law which predicts an arrest point at R = RM = R0 +
V 2

0 /2µg ≈ V 2
0 /2µg. Thus, from (4.6) for V0

RM ≈ 1.6H 2/3D1/3, V0(R) ≈ V0

√(
1 − R

RM

)
. (4.7)

From the mass conservation relation, the density, which behaves as R−1(1−R/RM )−1/2,
strongly decreases as R increases. A plot of V0(R) determined using the LDV and PIV
techniques is shown in figure 9 along with a fit to the above equation using µ ≈ 0.6.
The agreement is good, giving the value of the dynamic friction coefficient of the
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Figure 9. The velocity of the horizontal layer versus the radial distance from the impact
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friction coefficient of 0.6.
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Figure 10. A schematic of the granular jump with the different length scales.

horizontal layer against the glass plate. The coefficient 1.6 in (4.7) for RM is obtained
assuming the measured value of µ = 0.6.

5. The filling phase
In order to complete our preliminary results (Boudet et al. 2005) we give, here, a

detailed description of the sand front dynamics. A basic property of the observed
front is its small spatial extension (in a radial cut) which can be characterized by a
width Λ which is time-dependent, but always of the order of the ripple wavelength
λ. We define Λ in the following way: if, at time T , the summit of the front is located
at some radial position R, then its base is at position R − Λ (see figure 10). Thus, at
any time, we can distinguish on the profile a dynamic front (which moves towards
the origin with a mean horizontal speed Vc(R)) and a final profile h∞(R) extending
from R to RJ . A striking feature of h∞(R) is the presence of small and quasi-periodic
fluctuations around a mean profile hc(R). This reflects the presence of the ripples
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already mentioned and can be expressed through the relations

h∞(R) = hc(R)(1 + ε(R)), hc(R) = q/RVc(R), q = Q/2πρc, (5.1)

where the fluctuation ε(R) of maximal amplitude of the order of ±0.1 has a period
λ. In (5.1), the second equality comes from the radial mass conservation relation for
the mean values.

Since λ and Λ are small lengths of 2–4 mm (Boudet et al. 2005), we can split the
study of the dynamics into two steps: a global analysis where the fluctuations are
neglected (λ= Λ = ε = 0) and a small scale analysis where the fluctuations are taken
into account perturbatively.

For the large-scale analysis, the results of the following paragraph show that
a description borrowed directly from the hydraulic jump determination gives an
acceptable determination of the mean profile hc(R) and closure speed Vc(R).

For the dynamics of the front at the wavelength scale λ, we must consider the advent
of avalanches to explain its local speed and slope fluctuations and the granular effects
become dominant as we have shown previously (Boudet et al. 2005).

5.1. Determination of the final profile and of the closing speed

At large scales, the sand-pile formation at radial position R appears as a vertical jump
suddenly formed by a granular flow which encounters the following discontinuities:
for R = R−, the characteristics of the flow ρ(R), V0(R), h0 are those of the horizontal
incoming flow in its stationary regime, given in § 4, and for R = R+, the characteristics
of the flow are those of the sand pile ρc, Vc(R), hc(R).

The mass conservation reads h0ρ(R)(V0(R) + Vc(R)) = ρcVc(R)hc(R) = Q/2πR and
the momentum conservation requires that the difference in pressure forces across
the jump balance the difference in radial momentum flux as in the hydraulic jump
(Middleman 1995), i.e.

h0ρ(R)V0(R)(V0(R) + Vc(R)) = 1
2
g
(
ρchc(R)2 − ρ(R)h2

0

)
. (5.2)

Here, we used an expression for the pressure (on the right-hand side) identical to that
used in the case of a hydraulic jump, i.e. the hydrostatic pressure as proposed since
Savage & Hutter’s work (Savage & Hutter 1989; Pouliquen & Forterre 2002; Gray
et al. 2003; Hákonardóttir & Hogg 2005). Since V0(R) is large compared to Vc(R)
and h0 small compared to hc(R), we retain the leading terms in this expression and
obtain:

hc(R) ≈
√

QV0(R)/πgρcR, (5.3)

Vc(R) ≈ 1
2

√
gQ/πρcRV0(R). (5.4)

Figure 11 shows the measured mean profile hc(R). The height of the sand pile left
behind the front increases as the impact point is approached. The dependence of this
profile on the distance R turns out to be approximated well by the expression above
where all the terms are known. This figure illustrates the central result of this paper,
namely that the profile of the deposited sand can be understood using a balance
between the momentum flux across the jump and the hydrostatic pressure difference.

Such comments can be transposed to the closing speed, since it is simply
derived from the profile through mass conservation. Equation (5.4) gives the correct
dependence of the closing speed versus the radial distance R as shown by the solid
line in figure 12. Again, all the terms in the expression for the closing speed are
known. These data show that the speed increases rapidly as the front reaches the
impact point. This is another important aspect of this study illustrating that the jump
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Figure 11. A typical profile hc(R) for H = 20 cm, D = 12 mm, and d = 160 µm. The solid line
is the result of (5.3) given in the text.
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Figure 12. A typical variation of the closing speed of the jump versus the radial distance R.
The solid line is the result of (5.4) given in the text.

characteristics, its speed and its height, are correctly described using the momentum
flux/pressure balance.

It should be noted here that this height profile ends with a sharp cutoff at a
well-defined position RJ which is different from the stopping distance RM discussed
above. This observation will be explained below.

6. Transient regime and the initial granular jump
The initial stopping of the horizontal layer involves a transient regime, whose

behaviour presents some differences from the stationary regime. A sequence of images
as the jet first hits the surface is shown in figure 13. The differences between the
transient and stationary regimes are already apparent in the vertically falling jet
whose first front, more exposed to the air friction, is slower and locally enlarged, as
seen in the first two photographs of figure 13. As the bottom part of the jet hits
the surface, it expands radially outwards as seen 24 ms later. This first front becomes
ring-like as it travels farther from the impact point as seen 48 ms after. This ring
grows in importance as it continues to expand, as shown for 80 ms and later times.
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t = 48 ms t = 80 ms t = 144 ms

t = 0 ms t = 16 ms t = 24 ms

t = 288 ms t = 312 ms t = 472 ms

Figure 13. Transient regime. A sequence of images showing the first stages of the experiment
when the jet first impacts the surface. The following stages show how the sand spreads out
and stops at a well-defined position away from the impact. Once this stopping occurs, a sand
front starts to advance towards the impact point.

In this sequence of images, we can therefore follow the initial stages of formation of
the initial jump very accurately. The velocity of the first ring turns out to be smaller
than the velocity V0 determined in the stationary regime so the arrest point of this
first ring occurs at a radius RJ smaller than the position RM . Typically, the ratio
RJ /RM varies between 0.8 and 0.9. Once the first ring stops at RJ , which occurs in the
example shown in figure 13 at t = 312 ms, the continuous flow in the horizontal layer
starts to accumulate at this point, and the sand front starts its advance towards the
injection point as shown for t = 472 ms. At later times, the stationary regime is well
established. The cutoff observed for the profile displayed previously occurs at RJ ; the
height of the pile at this point will be denoted hJ and examined below. As a result,
the profile hc(R) matches continuously with the initial jump at R = RJ , hc(RJ ) = hJ

and its height increases for R <RJ . The region R >RJ is screened by the initial jump
formed by the first propagating ring. The profile hc(R) has, here, a sharp cutoff as
seen previously, in such a way that the jump height hJ and the jump radius RJ can
be measured by inspection of hc(R) near its endpoint.

We thus reduce, within a good approximation, the complicated dynamics of the
flow arrest to the following picture. After the arrest of the first propagating ring at
R ≈ RJ , the remaining part of the flow concentrates its deposition around this point
as long as its height is below hJ . This stage corresponds to the initial granular jump
formation. Then the remaining part of the flow collides with the initial jump and its
deposition appears as a sand front which moves towards the injection centre.

6.1. Determination of the initial jump radius and height

In § 4.3, we have studied the horizontal layer in its stationary regime. We recall
that this flow leaves the impact region at R = R0 with a speed V0 given in (4.6),
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Figure 14. The initial jump diameter DJ =2RJ as a function of (HD)2/3d1/3 for different
chute heights, funnel diameters and bead diameters.

decelerates according to the Coulomb law and would stop at RM = V 2
0 /2µg. We have

studied the transient regime as the jet first hits the surface and here we summarize
our observations. The corresponding impact region becomes progressively denser and
smoother. However, R0 cannot be identified as easily as in the stationary regime.
Nonetheless, the first front of the horizontal layer behaves qualitatively as in the
stationary regime: it is subject to the same Coulomb deceleration, but its speed
VI at R = R0 is always lower than V0. This is because for the first front produced
after the jet first hits the surface, the vertical chute speed and the restitution factor
of the impact region are smaller than for the stationary regime. The ratio VI/V0

appears to be independent of the chute height and depends very weakly on D and d .
Thus, RJ = V 2

I /2µg <RM (the point RM is never reached as already explained). The
measurements of RJ are summarized in figure 14. This arrest distance turns out to
depend on H , D and d and the best rescaling we could find is shown in figure 14
where RJ is plotted versus (HD)2/3d1/3. In order to appreciate this point further, we
plot in figure 15, V0(R) measured in the stationary regime and the velocity of the first
ring Vr (R). The velocity of the first ring is always smaller than the velocity of the
horizontal layer at all values of R. The velocity of the first ring also vanishes at a
smaller distance than V0(R). The most surprising aspect of these measurements is that
the friction coefficient for the first ring turns out to be smaller than the coefficient
determined for the stationary flow of the horizontal layer. The measured value for
the first ring is about 0.3 (the mean value from a set of measurements is 0.3 ± 0.05)
whereas we had measured 0.6 for the stationary regime. We do not know what the
origin of this difference is. The first ring seems to be compact while the horizontal
layer is dilute, so this difference seems surprising as it would indicate a higher friction
coefficient for the more dilute flow. The value of 0.3 measured for the first ring is
slightly lower than the dynamic friction coefficient for glass on glass (0.4) while the
more dilute flow shows a higher value.

The initial jump height hJ is given by the height of the sand-pile profile at R = RJ .

This height increases linearly with the funnel diameter D (figure 16). This height also
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Figure 16. The variation of hJ as a function of D(Hd)−1/6.

depends very weakly on H and d . Considering the scaling found for RJ and the
shape of the profile hc(R), hJ is expected to scale as D(Hd)−1/6 which is borne out
experimentally. The observed dependence of RJ and hJ on the parameters H , D and
d calls for an extra length scale. Indeed, to write the observed scalings correctly so
that both RJ and hJ scale as a length, we must introduce a characteristic length scale
l0. The scalings then read: RJ = l

−2/3
0 (HD)2/3d1/3 and hJ ∼ l

1/3
0 D(Hd)−1/6. From fits

to the varitation of RJ and hJ , the value of l0 turns out to be 0.8 mm. This length is
therefore of order 1 mm. We do not know at present what the meaning of this extra
length scale is, considering that the other length scales of the problem have all been
used. All we can say is that this length scale is associated with the transient state of
the impact of the jet on the solid surface.
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Figure 17. The dynamics of the moving sand front: during one cycle, the sand front angle
starts out small, increases to high values by deposition, before becoming small again by
avalanching at the end of the cycle. The cycle here lasts 80 ms.
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Figure 18. The variations of the front angle and the velocity of the base of the front during
several oscillations. Note that the angle oscillates between angles close to the repose angle and
angles as high as 70◦. The velocity of the base oscillates also and goes through periods (for
which the angle is small) where it is basically zero indicating a pinning of the base while the
angle of the front increases.

6.2. Relation between the transient phase and the filling phase at small scale

For completeness, we now consider the sand pile as it advances towards the origin
once the initial jump is built, but our aim is to describe the small-scale details of the
front dynamics. As shown in figures 17 and 18, the advancing front has an oscillating
dynamic. A front profile is shown in figure 17 for three different times corresponding
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to one cycle of the oscillating dynamics of the front. The front starts out with a
small angle and owing to deposition of the incoming sand, the front angle increases
as shown for 40 ms later. As the front reaches high angles, the angle decreases by
avalanching to reach a state (80 ms later) similar to the first profile with a smaller
front angle. Figure 18 illustrates these oscillations. The velocity of the base oscillates
as in stick–slip motion while the average angle of the front oscillates between a
small angle close to the angle of repose and a high angle which can reach over 60◦.
The horizontal flow collides with the grains previously accumulated and this induces
instabilities of the front. The instability of the front stems from the difference between
RM and RJ and therefore to the presence of the transient state described above. Once
the initial front stops at RJ , the incoming flux which should stop at RM , climbs up
the initial jump. This climbing increases the slope at the front. If this slope becomes
sufficiently strong, avalanches would ensue. This avalanching would then continue
since, at any instant, the front is at a shorter distance than the true arrest point
and the velocity of the incoming grains is sufficient for climbing up the slope. This
simple argument can be made more quantitative by considering the energy balance
at the front. The wavelength of the pattern is of order hJ and the maximal angle is
related to the minimal angle of the front by a simple relation tan θM ≈ 4 tan θm. The
experimental details of the front dynamics have been reported in (Boudet et al. 2005)
and the semiquantitative analysis of these dynamics will be reported elsewhere.

7. Conclusion
Through a detailed study of the impact of a jet of granular material on a smooth

solid surface, we have analysed the properties of the falling jet, the impact zone, the
fast flow of the material following this impact, and the formation of the jump itself.
The thinning of the jet during its fall, the fast radial flow, and the existence of the
jump are shared by both granular materials and liquids. The thinning of the jet is
found to obey a universal scaling law. The impact region turns out to have a universal
character as well. The jump here advances towards the jet impact position, unlike for
liquids where it is static. Still, a balance between momentum flux across the jump and
the difference in pressure across it can be used to understand the velocity of the front
as well as the height of the jump. This also allows us to predict the shape of the final
sand pile. However, the presence of compressibility and therefore variations of density
play an important role and have to be taken into account explicitly. Other features
and in particular the presence of small-scale oscillatory dynamics are directly related
to the granular nature of the medium. The front is unstable towards oscillations of its
front angle and speed owing to the presence of avalanches (a granular feature). The
granular jump studied here therefore brings forth the interplay between continuum
hydrodynamic properties and the granular and discrete nature of the medium.
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